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We investigate, using the noise reduction technique,ahanptoticuniversality class of the well-studied
nonequilibrium limited mobility atomistic solid-on-solid surface growth models introduced by Wolf and Villain
(WV) and Das Sarma and Tamborer @) in the context of kinetic surface roughening in ideal molecular
beam epitaxy. We find essentially all the earlier conclusions regarding the universality class of DT and WV
models to be severely hampered by slow crossover and extremely long-lived transient effects. We identify the
correct asymptotic universality cldes that differs from earlier conclusions in several instances.
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Kinetic surface roughening of nonequilibrium growth ity nonequilibrium surface growth models have attracted a
models, particularly under solid-on-soli8OS growth con-  great deal of attentiofil] primarily because of the following
ditions, remains a subject of considerable interest and actithree reasons.
ity in spite of a great deal of theoretical and experimental (1) These are the first growth models that were demon-
research in the topic during the last decddg¢ Solid-on-  strated to lie outside the generic universality class,
solid or SOS growth is an extensively used lattice growth (2) In spite of their highly simplified nature, the various
model where each atom can only sit on top of another atongrowth exponents and growth morphologies in these models
so that overhangs and vacancies are not allowed. While theeem to agree well with those in full diffusion Arrhenius
genericnonequilibrium surface growth universality clags  hopping MBE growth modelévhere all atoms at the growth
the situation allowing overhangs and bulk defects, i.e., undefront are allowed to hop continuously according to
generic non-SOS conditionss theoretically accepted to be temperature-dependent hopping ratashe low-temperature
the Kardar-Parisi-ZhangKPZ) universality (although the kinetically rough regime.
asymptotic KPZ universality in specific models may be (3) Obtaining a coarse-grainezbntinuumdescription of
masked by extremely slow crossover effecthere is no thediscretelow mobility growth modeldi.e., writing down a
such consensus for SOS growth models where seeminglsontinuum dynamical growth equation corresponding to the
innocuous small changes in local growth rules appear to leadellular automata discrete rules defining the low mobility
to different dynamic universality classes. In fact, some ofgrowth model$ has turned out to be extremely difficult in
these nonequilibrium SOS growth models, introduced in thespite of the deceptive simplicity of the models. The innova-
context of mimicking ideal molecular beam epitatyBE), tion and the technique we introduce in the study of these
do not even seem to obey self-affine dynamic scaling behawextremely well-studied limited mobility growth models is the
ior, instead exhibiting nonuniversal anomalous and multi-use of thenoise reductiortechniqud 2] in the direct numeri-
affine scaling. It may, therefore, be questioned whether theal simulation of the atomistic growth rules. Our conclusion,
universality class concept is useful in SOS growth models obased on extensive numerical simulations in bothlland
even does it apply to nonequilibrium SOS growth models2+1 dimensions(plus some limited simulations in higher
We note that in MBE growth one tries to avoid as much asdimensiong is that theasymptoticuniversality class of the
possible the formation of overhangs and vacancies or void ivarious limited mobility growth models is a surprisingly
the growing film in order to obtain high-quality thin films, subtle issue with many of the earlier findingscluding
and therefore SOS conditions of no overhangs and vacancie@®me from our groupbeingincorrect due to pathologically
apply quite accurately to MBE growth. slow crossover and extremely long transient effects that typi-

In this paper we address this confusing situation plaguingally distract from ascertaining the true asymptotic univer-
our understanding of the universality class of discrete SOSality class of these models.
nonequilibrium growth models by concentrating on a specific  One striking feature of our results is the apparent depen-
class of surface diffusion driven stochastic growth modelsgdence of the asymptotic universality class on the system di-
that mimic in a drastically simplified manner low- mensionalityd, not merely in the sense of well-known hy-
temperature molecular beam epitaxial growth. This class operscaling relations, but in the fact that the applicable
models has been referred to as “limited mobility” nonequi- hyperscaling relation itseffconnecting the dynamical expo-
librium growth models because the deposited atoms are onlyent z with the roughness exponent for example, for a
allowed to diffuse(obeying certain specific local diffusion specific limited mobility growth model, may depend dn
rules at incidence, and all the other atoms in the growingWe believe that such dimension-dependsouniversalini-
film, except for the most recently incident atom, do not dif- versality, where the hyperscaling relation for a given model
fuse. In spite of their highly simplified nature, limited mobil- changes withd (and which, to the best of our knowledge, has

1063-651X/2002/663)/0361447)/$20.00 65 036144-1 ©2002 The American Physical Society



DAS SARMA, CHATRAPHORN, AND TOROCZKAI PHYSICAL REVIEW E65 036144

shown in this paper use=1 (with the length unit being the
lattice constant throughout this papere., nearest-neighbor
diffusion only. We have, however, verified thais an irrel-
evant variable, and all our conclusions in this paper are in-
dependent of the precise valuelds long as <L, whereL
is the linear size of the substrate, although finite size and
crossover effects may be stronglgnd nontrivially depen-
dent on the value of/L. The DT model has the additional
diffusion constraint that only deposited atoms with no lateral
nearest-neighbor bondse., the random incidence site has
no occupied nearest neighbor in the same “layeate al-
lowed to move, whereas in the WV modal deposited at-
FIG. 1. Schematic Configurations defining the grOWth rules foroms may move provided the local coordination number is
the DT and WV models id=1+1. For the ADT model, adatom maximized. The ADT and the SWV models are intermediate
“g”in the top (DT) plot will only hop to the left where it willhave i, their dynamics with respect to DT and WV models in the
three nearest neighbors. For the SWV model, adatgrhifi the  gan5e that ADT maximizes the local coordination while still
bottom (WV) plot will choose between the left and right neighbors 4 6ying only deposited atoms with no nearest-neighbor lat-
with equal probability. eral bonds to diffuse, whereas the SWV model only increases
the local coordination while allowing all deposited atoms to
no known analog in equilibrium critical phenomena where amove (provided they can increase their local coordination or
given Hamiltonian or free energy functional, e.g., thé  nearest-neighbor bonding configuratiom all the models,
model, is characterized by a unique hyperscaling relation thethe incident atom is allowed to move randomly to the incor-
does notthange with the specific value dj, is a character- poration site if several possible incorporation sites satisfy the
istic feature of nonequilibrium processes, and may transcengrowth rules.
the specific models and phenomena being studied here. One All our simulations utilize the noise reduction technique
implication of this peculiar dimension-dependent universalintroduced by two of us in an earlier papgt]. The noise
ity is that the universality class concept, which is one of thereduction technique allows only a fraction of the successful
most important conceptual foundations of modern criticalhits (i.e., the incident atoms that satisfy the specific growth
phenomena, may be of rather limited validity and usefulnessules of the modglto be executed—the noise reduction pa-
in nonequilibrium phenomena since the model by itself doesameterm defines the number of successful hits needed be-
not specify the universality class—it depends on the modefore incorporation is allowedni=1 is the original DT or
(i.e., the specific set of discrete dynamic growth rules in ouMWV model. It is well-known that the noise reduction tech-
growth model and also on the dimensionality nique, which has been extremely successful in clarifying the
We study the limited mobility nonequilibrium growth universality class of various non-SOS growth modesy.,
models introduced by Wolf and VillaitWV) [3] and by Das  Eden model, DLA with severe crossover problems, is very
Sarma and Tamboren€@T) [4], both of which have already effective in obtaining the universality class of growth mod-
been studied extensively in the literature and discussed rathets. In particular, the noise reduction technique>1) ef-
elaborately in recent review$]. We also study two simple fectively suppresses the severe correction to the scaling in-
variants of these models, which we calsymmetricDT  duced by the strong stochasticity in limited mobility growth
(ADT) andsymmetricVV (SWV) models. The growth rules models, and thus makes it easier to determine the asymptotic
for these models are described in Fig. 1 tbr1+1—the  universality class. We emphasize that the noise reduction
rules for higher dimensions involve straightforward generali-technique is absolutely crucial in obtaining the results and
zation of the rules depicted in Fig. 1. In all four models, conclusions presented in this paper, and its introduction in
atoms are deposited randomly on d—(1)-dimensional the simulations is the key feature that enables us to deter-
square lattice substratgvhich is flat initially) obeying the  mine the universality clags9 of the limited mobility growth
SOS constraint—a deposited atom is then allowed to diffusenodels we study in this paper.
or hop instantaneously at incidencall limited mobility The idea behind the noise reduction technique, which in
models are also by definitiomstantaneous relaxatiomod-  the context of limited mobility nonequilibrium SOS growth
els to its final incorporation sitéafter which theincorpo-  models(being discussed in this papéras been described in
rated atom never moves agairaccording to the bonding detail in Ref.[2], is that noise induces large hills and valleys
configurations of the deposition site. In /WV) model the  on the growing surface that hinder the accurate measurement
deposited atom tries to increagenaximize its nearest- of the growth exponents, and consequently any technique
neighbor bonding configuration by moving to the incorpora-that suppresses large hills and valley®., large nearest-
tion site. If the deposition and all possible incorporation siteseighbor height differencgshould lead to better scaling be-
have the same nearest-neighbor bonding configurations, thevior and relatively more accurate estimates of the growth
incident atom does not move and stays at the site of deposexponents. The noise reduction technique, which has been
tion. The diffusion lengtH, the distance over which the de- very successful in suppressing corrections to the scaling in
posited atom is allowed to search to find its incorporationseveral different nonequilibrium growth processésg.,
site, is a parameter of the model, and the simulation resultdiffusion-limited aggregation, Eden growth, ballistic deposi-

[y

[c]-
DT model

[c]-
WV model
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tion), achieves good scaling behavi@nd consequently bet- 1200 DT m=1 | 1200 "ADT m=1 |
ter critical exponenisby accepting only a small fractiofto 0 W 0 Py
be precise, a fraction of , wherem>1 is the noise reduc-

tion factop of the incident particles and thereby greatly sup- —1200 -1200

pressing large hills and valleys in the noise-reduced growth

morphology. Earlier detailed analysis by two of[@3 estab- 12000 swv m=1] 8907wy m=1
lished the noise reduction technique as a highly effective tool 0 W 0 W
in eliminating corrections to scaling and crossover effects in 1200 600

the dynamical growth simulations of discrete SOS limited
mobility nonequilibrium growth models for kinetic surface
roughening(e.g., DT and WV modej)sof interest to us in

(a) 0 500 1000 0 500 1000

this paper. The basic algorithm for our noise reduction tech- 20017 DT m=5 20077 ADT m=5 |
nique involves putting a virtual counter on each surface lat- 0 W 0

tice site that registers a positive countevery time a new

atom from the incident beam randomly drops on that counter. —200 —200

A real deposition event is allowed in the simulation only

when the counter registers a predetermined valum ¢for 20077 SWV m=5] 1001 WV m=5
example,m=5 or 7, etc) No actual deposition or incorpo- 0 W 0 WNW
ration occurs at that particular site untilreaches the prede- 200 100

termined noise reduction factor numbé&he same is, of (b)
course, true for each surface $itEor m=1, a noise reduc-

tion factor of unity, the growth model by definition is the  FIG. 2. (a) Typical growth morphologies for one dimensional
same as the usual growth simulation without any noise retd=1+1) growth without noise reduction in the four mod€lsT,
duction. Note that a large value of the noise reduction pa®ADT, SWV, WV) as shown in the paper for a substrate of a 1000

rameterm (10—20, typically does not help the situation be- site section from a 10 000 site substrate after the deposition‘bf 10

; e ; onolayerdML) (the average height is subtracted out for clarit
cause it suppresses kinetic surface roughening far too Weﬂ;) the Za n?(e as) if(a) ! witﬁ . no?se oduction factane 5 [no‘l y

producing smooth layer-by-layer growth with essentially no . . . )
. g . h ff I I .
roughening. The optimal value oh (usually in the range the very different vertical scales i) compared with(@)]

3-10 has to be chosen by trial and error for specific growth
models—m cannot be too small for noise effects will then
dominate with steep hills and deep valleyarge values of
surface height gradientsandm cannot be too large since the
smooth layer-by-layer growth will then proceed indefinitely oh
with no kinetic surface roughening. We use=1-20 for the — =1,V2h—1,V*h+\,,V2(Vh)2+ 7, (@]
results shown in this paper. ot

We demonstrate in Fig. 2 the main qualitative features of
noise reduction technique by showing our simulatedl  where h=h(x,t), and » is the spatiotemporal Gaussian
+1 dimensional growth morphologigse., for growth on  Wwhite noise associated with the incident beam shot noise.
one-dimensional substratdn Fig. 2a) we show our simu- The symmetry-allowed fourth-order nonlinear teWiVh)3
lated growth morphologies without any noise reductipe.,,  has been left out of Eq.) since, upon renormalization, it
m=1) for the four modelgsee Fig. 1 studied in this paper generates the linea&¥2h term already included in Eql).
(i.e., DT, WV, ADT, and SWV whereas the corresponding [The constant flux term associated with the average growth
noise-reduced growth morphologiésith the noise reduc- has been left out of Eq1) since the height fluctuation vari-
tion factor m=5) are shown in Fig. @)—note the very ableh is defined with respect to the average interface posi-
different vertical height scales in the two sets of figurestion.] Whenv,#0, the asymptotic growth universality class
demonstrating clearly the qualitative feature of the noise reis the so-called Edwards-WilkinsofEW) universality @,
duction induced suppression of high hills and deep valleys in>0) or the “unstable” or mounded growth universality A
Fig. 2(b) compared with Fig. @). We point out(as discussed <0)—the fourth-order terms in E@1) are then all irrelevant
in details in Ref[2]) that the universality class of a growth although they may be important in controlling the nonas-
model is known to be unaffected by the noise reduction techymptotic transient regime that may last for a long time.
nique, which only serves to suppress corrections to scalingWhenv,=0 (as well as the corresponding fourth-order non-

Before presenting our simulation results, we briefly de-linear termV(Vh)® being absent the asymptotic growth
scribe the continuum dynamical growth equation approachiniversality class is the MBE growth universality determined
that we use in discussing the universality class of varioudy theV?(Vh)?2 term with the initial transient regim@vhich
models. Denoting the dynamical height fluctuation variablecould be extremely long lived depending on the ratio
ash, and the lateral coordinatelong the substrat@asx and  v4/\,,) controlled by the irrelevant fourth-order linear term.
the growth “time” ast (note that the growth time is defined When bothrv,=0 and\,,=0, the growth universality class
entirely by the average deposition rate since we neglect bulls the so-called Mullins-HerringMH) universality defined

0 500 1000 0 500 1000

vacancies, overhangs, and evaporation in our SOS model
the most general leading-order growth equafi@hfor our
problem can be written as
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TABLE |. Summary of our results for the DT and WV models.

Model Properties d=1+1 d=2+1
Exponents a=18=1/3z=3 a=0(log),8=0(log)z=2
DT Morphology Kinetically rough Flat and very smooth
Particle current J=0(~+109) J~-10"*
Exponents a=1/2B=1/4z=2 a=1,B=1/3z=4
WV Morphology Kinetically rough Mounds with selected slope
Particle current J~-103 Jiog~—1072; 3y~ +1072

by the v,V*h term. The various growth exponents for thesealready known in the literaturg2,3,5,§ from earlier exten-
universality classes are well known and can be found in theive one-dimensional simulations of these two well-studied
literature[1] where the details on EW, MH, and MBE uni- models. The one-dimensional D(WV) model belongs to
versalities are also discussed. MBE (EW) asymptotic universality as we also confirm deci-
Determining the asymptotic growth universality class of asjvely in our current simulations. The fact that tte=1+ 1
discrete nonequilibrium growth model may be difficult due pT model hasv,=0 exactly follows from a hidden dynami-
to extremely long-lived transients that would mask the crossgg symmetny[7] in the DT growth rules, which areymmet-
over behavior. This is obviously a more acute problem whenric’ i.e., the DT diffusion rules do not have any preference
any two (or all thre@ of the growth terms 2,0 2;,74#0)  petween two- and three-bonded incorporation sites. This also

Z:ien?rgzrr?rr?' 'ﬂeEq%)' zilth;)(qgh ﬁpnﬁphiﬁtlonfs C‘t)#ld ;ISO makes the current on a tilted substrate to vanish exactly in
! igher-order terme., higher than fourth ordgr thed=1+1 DT model, confirming that it is generically in

neglected in Eq(1). It is reasonable to assume that in thethe MBE universality clas§v,=0 in Eq. (1)]. Similarly,

generic situation, i.e., in the absence of any compelling sym- = .~
metry or conservation law induced constraints, the fourth-earller tiited substrate current measuremdfifsas well as

order nonlinear equation, E@L), should suffice to determine direct S|mulat|ona! eXPO”e”t measurements .fordhe.1+l
the asymptotic universality class of a given growth modeI,V_VV model establish it to be in the EW unlversallty_ cl_ass
and there is no need to consider a higher-orgieg., the (|.e.,. v,>0) a_Ithough the WV model shows very similar
sixth-ordej dynamical equation. This is particularly true Scaling behavior to the DT model for a very long transient
since simple power counting considerations indicate thategime sincegv,|~0 andv,,\», are rather large in the WV
many of the higher-order nonlinearities produce th®r the ~ model. Our noise reduced simulations of the WV md@g!
\,, term upon renormalization, and most of the higher-ordeiverify rather strikingly that this model belongs to EW uni-
terms are simply irrelevant. Thus, it is quite possible thatversality in 1+1 dimensions. The suppression of crossover
even in the extremely unlikely situation that all the terms inand ~ correction to  the scaling effect in the
Eq. (1) vanish, i.e.p,,\»,,v,=0, for some pathological rea- (1+1)-dimensional DT and WV models was our original
sons Eq.(1) may still remain a valid generic description of motivation for introducing 2] the noise reduction technique
the asymptotic growth universality class, because higherin this context.
order nonlinearities neglected in E@) give rise to the terms ~ The kinetically rough surface growth is traditionally ana-
V2h and/orV?(Vh)? in the growth dynamics. lyzed in terms of the dynamic scaling hypothesis where the
We have determined the asymptotic universality classurface widththe root mean square fluctuation in the surface
from our discrete stochastic simulations by calculating théheight or more generally, the height-height correlation func-
growth exponents characterizing the height-height correlation shows generically scale invariant power-law scaling be-
tion functions as well as by measuring the surface current ohavior, with critical exponentsa,3,z=a/B, given by
a tilted substrate as proposed in Ré&f. We emphasize that W(L,t)~L*f(£(t)/L) where W is the dynamical surface
the noise reduction technique is crucial in enabling us tovidth at growth timet for a substrate of lateral size and
conclusively determine the asymptotic universality class of(t) is the lateral dynamical correlation length for the spe-
the four (DT, WV, ADT, SWV) discrete growth models we cific growth process Withf(t)~t1’2. The scaling function
study in contrast to earlier simulational studies that have(x) behaves asf(x>1)~1 and f(x<1)~x* so that
been severely hampered by slow crossover, long transienfy(L,t—*)=W(L)~L* and W(L,t<L¥)~t# with B
and strong correction to scaling problems. Our conclusions= a/z, whereWs(L) is the saturated steady-state long time
about the growth universality classes of the four models, asurface width andW(L<{(t)) is the pre-steady-state dy-
summarized in Table I, are based on consistent results fromamical surface width. The set of critical exponents 3,
simultaneous measurements of growth exponents and surfaead z= «/B define the growth universality class, and, in
currents on tilted substrates. All our exponent calculationgrinciple, can be determined for a particular continuum
are results of extensive averaging over many simulation rungrowth equation. For the sake of completenese the WV
(and each run is self-averaging since we average over all thgrowth results presented belpwwe point out that for
substrate lattice sitg¢s-typically we use 100 runs for deter- mounding instability with slope selection, when the surface
mining our exponents although 10 runs are usually adequateorphology evolves into a regular mounded pattern with the
The results id=1+1 for the DT and the WV model are sides of the mounds having constant slopes, one @et%,
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FIG. 3. () Interface widthW versus timet in the 2+1 DT FIG. 4. (a) Interface widthW versus timet in the 2+1 WV

model with substrate size=1000x 1000 and noise reduction fac- model with substrate size=100x 100 and noise reduction factor
torm=1, 3, 10, and 15 from top to bottom. The solid lines are bestm=5. (b) A typical morphology of a noise reduced WV model
power-law fit, which yield the growth exponegtthat decreases as (m=5) from a 500< 500 substratéonly a section of 208 200 is
mincreases(b) A typical morphology of a noise reduced DT model shown hergat 1¢ ML. The units are dimensionless as explained in
(m=5) from a 1000x 1000 substratéonly a section of 208200 is  the caption for Fig. 3.

shown hergat 400 ML. The interface width is measured in units of

monolayers or lattice spacing and time is measured in units of num- . L .
ber of deposited monolayefse., average height of the surface "9 WV results because EW universality is the generic SOS
universality class. Our measurement of current on tilted sub-

- i strates in the (2 1)-dimensional noise reduced DT simula-
and only one exponent or z) B=1/z then defines the s aiways exhibit a small but finite downhill current indi-

growth pattern. In Table | and in Figs. 3 and 4 we present OUEating the presence of a smai,>0 term in Eq. (1).
calculated critical exponents for the DT and WV modelthis ™ should be contrasted with the corresponding
along with the associated continuum equation descriptions.(1+ 1)-dimensional DT results where a simple symmetry ar-

Our most surprisi_ng findings are presented in Fidic3 gument as well as extensive numerical simulations defini-
the DT modg) and _F|g. A(WV mode) where our results_for tively establish the absence of th€?h term in thed=1
the (2+1)-dimensional DT and WV models are depicted. , | "pt growth equation, i.e.»,=0 (£0) in the d=1
We find that the DTIWV) model in (2+1) dimensions be- | 1 54 1) DT model. The asymptotic universality class of
longs to the Eyv(uns_table dy_namlc _unlversallty In contrast (1+1)-dimensional DT model is now well established to be
to the (1+ 1)-dimensional universality class of these mOdels'given by the following continuum growth equation, which

This is an important result presented in this paper that disdoesnot have the generiz,d2h/dx? term of Eq.(1):
agrees with the earlier conclusions in the literature. The de- 2 o

termination of the asymptotic universality class of the (2
+1)-dimensional DT and WV model is the main result being

4 2 2 2 n
presented in this paper. @ — V4Q +)\22'9_<@) + ) (?_(@ +
We first discuss the (21)-dimensional DT results, dt ax* oax2\x) n=£E... "ox2 | ox ’
which are in some sense less surprising than the correspond- 2
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where the “higher-order” terms of the form The tilted substrate current measurement in the
8?1 9x?(ahlax)®™ with 2m=n=4,6,8 ..., are maginally  (2+ 1)-dimensional WV growth yields another curious sur-
relevant ind=1+1 (i.e., simple power counting reveals prise. It turns out that the local current is upfidlong(111)
them as having the same anomalous dimensions as the noglang or downhill [along (100] depending on how(.e.,
linear fourth-orderh,, term). Our tilted substrate current along which directionh one decides to tilt. The fact that the
measurement id=2+1 DT model shows the existence of a tilted substrate current could depend sensitiigly., stabi-
small slope-dependent downhill current of appoximate maglizing in some directions and destabilizing in other direc-
nitude ~10 2, whereas the corresponding=1+1 DT tions on the tilt direction has not earlier been reported in the
model has a current 10 ® (of random sigh, which is in- literature where most reported current measurements are car-
distinguishable from the background noise effect. We, thereried out in 14+ 1 dimensiongwhere, of course, this problem
fore, conclude that the (21)-dimensional DT model, de- cannot arisgwith the hope or expectatiaiproven to be false
scribing nonequilibrium growth on physical surfaces andin this paper that an accurate determination of the univer-
interfaces, belongs to the generic EW universality class, andality class of a growth model in11 dimensions will au-
has the following coarse-grained continuum description:  tomatically give us thesame universality class in 21
h dimensions—WV model is in the EW universality class in
_ 2 a 2 2n 1+1 dimensions and unstab{enounded morphologyin 2
ot vV hm vV h+n=1,§2,“3, AoV T 7. +1 dimensions. Thus the tilted substrate current measure-
(3) ment, while being capable of providing the correct universal-
ity class in 1+ 1 dimensions, may very well lead to mislead-
Our finding thatv; is very small, but nonzero, in E€3) for  ing and wrong conclusions in higher dimensions where the
(2+1)-dimensional DT growth should not come as a bigcurrent on tilted substrates is explicitly direction dependent
surprise(except, of course, for the fact that it has not earlierand is not uniquely defined. We will publish quantitative de-
been discovered in the literature including our own earliekajls on the WV mounding phenomenon elsewhere. Here we
work on the DT model[8] because the vanishing @ in  point out the following observations.
the (1+1)-dimensional DT model arises from a rather pecu- (1) The underlying mechanism for the WV mounded mor-
liar kinetic-topological symmetry of the DT model, which phology is related to surface cluster-edge kink) diffusion
applies only in one dimension and cannot be generalized tihduced mounding recently discussed in the literaf@ie
two-dimensional surfaces. In the absence of a compelling (2) This WV mounding phenomenon, arising as it does
symmetry argument manifestly making=0 in the growth  from kinetic-topological aspect of surface diffusion, leads to
equation, one should expect its generic presence in the (Zery strong instabilities infunphysical dimensions higher
+ 1)-dimensional DT model although the extreme quantitathan 2+ 1, where early work reported10] unexplained
tive smallness of, has made it difficult so far to establish strong mound formation in (81)- and (4+ 1)-dimensional
its finiteness in simulations. Our finding that there is awV growth. We have carried out WV simulations in+3
small downhill current on tilted substrates in the dimensions, finding very strong mounding even without any
(2+1)-dimensional DT model and that the critical expo- noise reduction, consistent with earlier findirfd$).
nents of (2+1)-dimensional DT growtliFig. 3) are consis- Finally we consider the two intermediate models, ADT
tent with EW universality clasgandnot particularly consis- and SWV, for the sake of completeness. THe-2+1
tent with the MBE universality defined by,=0 in Eq.(1)]  growth morphologies in these two models are shown in Figs.
leads to the conclusion that ¢21)-dimensional DT growth 5 (ADT) and 6 (SWV). Without presenting the actual nu-
is in the EW universality clasbr,#0 in Eq.(1)] and (1  merical results for the critical exponents for these two mod-
+1)-dimensional DT growth is in the MBE universality els, we just mention that the ADT and SWV models in 2
class ,=0). We have also carried out DT simulations in +1 dimensions behave qualitatively similar to the WV
(unphysical (3+1) dimensions finding very good agree- model in 2+ 1 dimensions with fairly strong mounding un-
ment with EW universality properties. der noise reduction although the morphological details in the
Our results for the (2 1)-dimensional WV mode(Fig.  two models differ somewhat with the SWV morphology be-
4) are very dramatic and completely unanticipated. We findng similar to the pyramidal structures of the WV morphol-
that the (2+1)-dimensional WV model leads to a spectacu-ogy and the ADT morphology having flat top mounds with
lar quasiregular mounded morphology indicating unstawvery deep and narrow grooves. Thus, ADT/SWV/WV all
ble epitaxial growth (whereas the corresponding have unstable growth in21 (or highe)y dimensions with
(1+1)-dimensional WV growth is asymptotically stable and quasiregular, mounded morphology, whereas DT #12(or
flat, belonging to the EW universality clas3hus the usual highep dimensions is in the EW universality with stable and
critical exponents &,8,z= a/B) are not particularly mean- smooth growth morphology. All four models have kinetically
ingful for (2+1)-dimensional WV growth(although they rough statistically scale invariant growth in-1L dimensions
can still be defined in the simulation results—the exponentswith the WV (DT) model belonging to EWMBE) univer-
however, provide a misleading picture since the growthsality class.
front, instead of being statistically scale invariant as it should Before concluding we point out that the noise reduction
be for kinetic surface roughening exhibiting power laws con-technique is only one of several methods one can apply to
trolled by critical exponents, has a quasiregular moundedmprove the calculation of exponents in kinetically rough
pattern. surface growth. For example, single-step model and re-
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FIG. 5. A typical morphology of a noise-reduced ADT model
(m=5) from a 100<100 substrate at fVL. (m=5) from a 100< 100 substrate at VL.

FIG. 6. A typical morphology of a noise reduced SWV model

stricted solid-on-solid modeldl] are successful in reducing (WV), and universality clas¢EW for DT and unstable for
noise in ballistic deposition simulations. These techniquegyy) are strikingly qualitatively different. We also find that
are, in fact, alternative ways of suppressing large SurfaCPneasuring surface current on tilted substragjs while be-
height diff_erences, very similar in spirit to our noise reduc-ing a potentially useful technique for discussing the
tion technique. _ . (1+1)-dimensional universality class, may not work in 2

_ We conclude by stating that we have found the universal- 1 gimensions and may produce misleading or conflicting
ity class concept to be of limited usefulness in conserveqonclusions depending on the precise direction of the surface
discrete limited mobility nonequilibrium surface growth crent. We have assumed throughout the paper that the
models. The same growth rules defining a particular modehgise reduction technique, which is absolutely crucial in our
(e.g., WV or DT) may belong to different universality classes gpaining the asymptotic universality classes of various mod-
in different dimensionalitiegnot in the sense of superuniver- gis we study, does not modify the universality class of a
sality, but in a more fundamental nontrivial sense as if anyrowth model(and only suppresses transient and correction-
equmbpum model, which is in the Ising unlversa!lty class in to-scaling effects by reducing the effective noise strength
two dimensions, behaves as awy model in three This pelief is based on extensive earlier analysis of the noise
dimensions—a patently absurd notiorin addition, rather reqyction technique in the literature, which, in general, is

minor changes in local growth rules could lead to dramatiGhought not to affect the growth universality class.
differences in the resulting growth morphology or the uni-

versality class—DT and WV have very similar local growth  This work was supported by the NSF-MRSEC and
rules, but their morphologies, smoofBT) and mounded US-ONR.
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