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Universality class of discrete solid-on-solid limited mobility nonequilibrium growth models
for kinetic surface roughening
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We investigate, using the noise reduction technique, theasymptoticuniversality class of the well-studied
nonequilibrium limited mobility atomistic solid-on-solid surface growth models introduced by Wolf and Villain
~WV! and Das Sarma and Tamborenea~DT! in the context of kinetic surface roughening in ideal molecular
beam epitaxy. We find essentially all the earlier conclusions regarding the universality class of DT and WV
models to be severely hampered by slow crossover and extremely long-lived transient effects. We identify the
correct asymptotic universality class~es! that differs from earlier conclusions in several instances.
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Kinetic surface roughening of nonequilibrium grow
models, particularly under solid-on-solid~SOS! growth con-
ditions, remains a subject of considerable interest and ac
ity in spite of a great deal of theoretical and experimen
research in the topic during the last decade@1#. Solid-on-
solid or SOS growth is an extensively used lattice grow
model where each atom can only sit on top of another a
so that overhangs and vacancies are not allowed. While
genericnonequilibrium surface growth universality class~in
the situation allowing overhangs and bulk defects, i.e., un
generic non-SOS conditions! is theoretically accepted to b
the Kardar-Parisi-Zhang~KPZ! universality ~although the
asymptotic KPZ universality in specific models may
masked by extremely slow crossover effects!, there is no
such consensus for SOS growth models where seemi
innocuous small changes in local growth rules appear to
to different dynamic universality classes. In fact, some
these nonequilibrium SOS growth models, introduced in
context of mimicking ideal molecular beam epitaxy~MBE!,
do not even seem to obey self-affine dynamic scaling beh
ior, instead exhibiting nonuniversal anomalous and mu
affine scaling. It may, therefore, be questioned whether
universality class concept is useful in SOS growth models
even does it apply to nonequilibrium SOS growth mode
We note that in MBE growth one tries to avoid as much
possible the formation of overhangs and vacancies or voi
the growing film in order to obtain high-quality thin films
and therefore SOS conditions of no overhangs and vacan
apply quite accurately to MBE growth.

In this paper we address this confusing situation plagu
our understanding of the universality class of discrete S
nonequilibrium growth models by concentrating on a spec
class of surface diffusion driven stochastic growth mod
that mimic in a drastically simplified manner low
temperature molecular beam epitaxial growth. This class
models has been referred to as ‘‘limited mobility’’ nonequ
librium growth models because the deposited atoms are
allowed to diffuse~obeying certain specific local diffusio
rules! at incidence, and all the other atoms in the growi
film, except for the most recently incident atom, do not d
fuse. In spite of their highly simplified nature, limited mob
1063-651X/2002/65~3!/036144~7!/$20.00 65 0361
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great deal of attention@1# primarily because of the following
three reasons.

~1! These are the first growth models that were dem
strated to lie outside the generic universality class,

~2! In spite of their highly simplified nature, the variou
growth exponents and growth morphologies in these mod
seem to agree well with those in full diffusion Arrheniu
hopping MBE growth models~where all atoms at the growth
front are allowed to hop continuously according
temperature-dependent hopping rates! in the low-temperature
kinetically rough regime.

~3! Obtaining a coarse-grainedcontinuumdescription of
thediscretelow mobility growth models~i.e., writing down a
continuum dynamical growth equation corresponding to
cellular automata discrete rules defining the low mobil
growth models! has turned out to be extremely difficult i
spite of the deceptive simplicity of the models. The innov
tion and the technique we introduce in the study of the
extremely well-studied limited mobility growth models is th
use of thenoise reductiontechnique@2# in the direct numeri-
cal simulation of the atomistic growth rules. Our conclusio
based on extensive numerical simulations in both 111 and
211 dimensions~plus some limited simulations in highe
dimensions! is that theasymptoticuniversality class of the
various limited mobility growth models is a surprising
subtle issue with many of the earlier findings~including
some from our group! being incorrect due to pathologically
slow crossover and extremely long transient effects that ty
cally distract from ascertaining the true asymptotic univ
sality class of these models.

One striking feature of our results is the apparent dep
dence of the asymptotic universality class on the system
mensionalityd, not merely in the sense of well-known hy
perscaling relations, but in the fact that the applica
hyperscaling relation itself~connecting the dynamical expo
nent z with the roughness exponenta for example!, for a
specific limited mobility growth model, may depend ond.
We believe that such dimension-dependentnonuniversaluni-
versality, where the hyperscaling relation for a given mo
changes withd ~and which, to the best of our knowledge, h
©2002 The American Physical Society44-1
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DAS SARMA, CHATRAPHORN, AND TOROCZKAI PHYSICAL REVIEW E65 036144
no known analog in equilibrium critical phenomena where
given Hamiltonian or free energy functional, e.g., thef4

model, is characterized by a unique hyperscaling relation
does notchange with the specific value ofd), is a character-
istic feature of nonequilibrium processes, and may transc
the specific models and phenomena being studied here.
implication of this peculiar dimension-dependent univers
ity is that the universality class concept, which is one of
most important conceptual foundations of modern criti
phenomena, may be of rather limited validity and usefuln
in nonequilibrium phenomena since the model by itself d
not specify the universality class—it depends on the mo
~i.e., the specific set of discrete dynamic growth rules in
growth model! and also on the dimensionality.

We study the limited mobility nonequilibrium growt
models introduced by Wolf and Villain~WV! @3# and by Das
Sarma and Tamborenea~DT! @4#, both of which have already
been studied extensively in the literature and discussed ra
elaborately in recent reviews@5#. We also study two simple
variants of these models, which we callasymmetricDT
~ADT! andsymmetricWV ~SWV! models. The growth rules
for these models are described in Fig. 1 ford5111—the
rules for higher dimensions involve straightforward gener
zation of the rules depicted in Fig. 1. In all four mode
atoms are deposited randomly on a (d21)-dimensional
square lattice substrate~which is flat initially! obeying the
SOS constraint—a deposited atom is then allowed to diff
or hop instantaneously at incidence~all limited mobility
models are also by definition,instantaneous relaxationmod-
els! to its final incorporation site~after which theincorpo-
rated atom never moves again! according to the bonding
configurations of the deposition site. In DT~WV! model the
deposited atom tries to increase~maximize! its nearest-
neighbor bonding configuration by moving to the incorpo
tion site. If the deposition and all possible incorporation si
have the same nearest-neighbor bonding configurations
incident atom does not move and stays at the site of dep
tion. The diffusion lengthl, the distance over which the de
posited atom is allowed to search to find its incorporat
site, is a parameter of the model, and the simulation res

FIG. 1. Schematic configurations defining the growth rules
the DT and WV models ind5111. For the ADT model, adatom
‘‘ g’’ in the top ~DT! plot will only hop to the left where it will have
three nearest neighbors. For the SWV model, adatom ‘‘g’’ in the
bottom~WV! plot will choose between the left and right neighbo
with equal probability.
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shown in this paper usel 51 ~with the length unit being the
lattice constant throughout this paper!, i.e., nearest-neighbo
diffusion only. We have, however, verified thatl is an irrel-
evant variable, and all our conclusions in this paper are
dependent of the precise value ofl as long asl !L, whereL
is the linear size of the substrate, although finite size a
crossover effects may be strongly~and nontrivially! depen-
dent on the value ofl /L. The DT model has the additiona
diffusion constraint that only deposited atoms with no late
nearest-neighbor bonds~i.e., the random incidence site ha
no occupied nearest neighbor in the same ‘‘layer’’! are al-
lowed to move, whereas in the WV modelall deposited at-
oms may move provided the local coordination number
maximized. The ADT and the SWV models are intermedi
in their dynamics with respect to DT and WV models in t
sense that ADT maximizes the local coordination while s
allowing only deposited atoms with no nearest-neighbor
eral bonds to diffuse, whereas the SWV model only increa
the local coordination while allowing all deposited atoms
move~provided they can increase their local coordination
nearest-neighbor bonding configuration!. In all the models,
the incident atom is allowed to move randomly to the inc
poration site if several possible incorporation sites satisfy
growth rules.

All our simulations utilize the noise reduction techniqu
introduced by two of us in an earlier paper@2#. The noise
reduction technique allows only a fraction of the success
hits ~i.e., the incident atoms that satisfy the specific grow
rules of the model! to be executed—the noise reduction p
rameterm defines the number of successful hits needed
fore incorporation is allowed (m51 is the original DT or
WV model!. It is well-known that the noise reduction tech
nique, which has been extremely successful in clarifying
universality class of various non-SOS growth models~e.g.,
Eden model, DLA! with severe crossover problems, is ve
effective in obtaining the universality class of growth mo
els. In particular, the noise reduction technique (m.1) ef-
fectively suppresses the severe correction to the scaling
duced by the strong stochasticity in limited mobility grow
models, and thus makes it easier to determine the asymp
universality class. We emphasize that the noise reduc
technique is absolutely crucial in obtaining the results a
conclusions presented in this paper, and its introduction
the simulations is the key feature that enables us to de
mine the universality class~es! of the limited mobility growth
models we study in this paper.

The idea behind the noise reduction technique, which
the context of limited mobility nonequilibrium SOS growt
models~being discussed in this paper! has been described i
detail in Ref.@2#, is that noise induces large hills and valle
on the growing surface that hinder the accurate measurem
of the growth exponents, and consequently any techni
that suppresses large hills and valleys~i.e., large nearest-
neighbor height differences! should lead to better scaling be
havior and relatively more accurate estimates of the gro
exponents. The noise reduction technique, which has b
very successful in suppressing corrections to the scalin
several different nonequilibrium growth processes~e.g.,
diffusion-limited aggregation, Eden growth, ballistic depo

r
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UNIVERSALITY CLASS OF DISCRETE SOLID-ON- . . . PHYSICAL REVIEW E 65 036144
tion!, achieves good scaling behavior~and consequently bet
ter critical exponents! by accepting only a small fraction~to
be precise, a fraction of 1/m, wherem.1 is the noise reduc
tion factor! of the incident particles and thereby greatly su
pressing large hills and valleys in the noise-reduced gro
morphology. Earlier detailed analysis by two of us@2# estab-
lished the noise reduction technique as a highly effective
in eliminating corrections to scaling and crossover effects
the dynamical growth simulations of discrete SOS limit
mobility nonequilibrium growth models for kinetic surfac
roughening~e.g., DT and WV models! of interest to us in
this paper. The basic algorithm for our noise reduction te
nique involves putting a virtual counter on each surface
tice site that registers a positive countm every time a new
atom from the incident beam randomly drops on that coun
A real deposition event is allowed in the simulation on
when the counter registers a predetermined value ofm ~for
example,m55 or 7, etc.! No actual deposition or incorpo
ration occurs at that particular site untilm reaches the prede
termined noise reduction factor number~the same is, of
course, true for each surface site!. For m51, a noise reduc-
tion factor of unity, the growth model by definition is th
same as the usual growth simulation without any noise
duction. Note that a large value of the noise reduction
rameterm ~10–20, typically! does not help the situation be
cause it suppresses kinetic surface roughening far too
producing smooth layer-by-layer growth with essentially
roughening. The optimal value ofm ~usually in the range
3–10! has to be chosen by trial and error for specific grow
models—m cannot be too small for noise effects will the
dominate with steep hills and deep valleys~large values of
surface height gradients!, andm cannot be too large since th
smooth layer-by-layer growth will then proceed indefinite
with no kinetic surface roughening. We usem51 –20 for the
results shown in this paper.

We demonstrate in Fig. 2 the main qualitative features
noise reduction technique by showing our simulatedd51
11 dimensional growth morphologies~i.e., for growth on
one-dimensional substrate!. In Fig. 2~a! we show our simu-
lated growth morphologies without any noise reduction~i.e.,
m51) for the four models~see Fig. 1! studied in this paper
~i.e., DT, WV, ADT, and SWV! whereas the correspondin
noise-reduced growth morphologies~with the noise reduc-
tion factor m55) are shown in Fig. 2~b!—note the very
different vertical height scales in the two sets of figur
demonstrating clearly the qualitative feature of the noise
duction induced suppression of high hills and deep valley
Fig. 2~b! compared with Fig. 2~a!. We point out~as discussed
in details in Ref.@2#! that the universality class of a growt
model is known to be unaffected by the noise reduction te
nique, which only serves to suppress corrections to scal

Before presenting our simulation results, we briefly d
scribe the continuum dynamical growth equation appro
that we use in discussing the universality class of vari
models. Denoting the dynamical height fluctuation varia
ash, and the lateral coordinate~along the substrate! asx and
the growth ‘‘time’’ as t ~note that the growth time is define
entirely by the average deposition rate since we neglect b
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vacancies, overhangs, and evaporation in our SOS mo!,
the most general leading-order growth equation@1# for our
problem can be written as

]h

]t
5n2¹2h2n4¹4h1l22¹

2~“h!21h, ~1!

where h[h(x,t), and h is the spatiotemporal Gaussia
white noise associated with the incident beam shot no
The symmetry-allowed fourth-order nonlinear term“(“h)3

has been left out of Eq.~1! since, upon renormalization, i
generates the linear¹2h term already included in Eq.~1!.
@The constant flux term associated with the average gro
has been left out of Eq.~1! since the height fluctuation vari
ableh is defined with respect to the average interface po
tion.# Whenn2Þ0, the asymptotic growth universality clas
is the so-called Edwards-Wilkinson~EW! universality (n2
.0) or the ‘‘unstable’’ or mounded growth universality (n2
,0)—the fourth-order terms in Eq.~1! are then all irrelevant
although they may be important in controlling the nona
ymptotic transient regime that may last for a long tim
Whenn2[0 ~as well as the corresponding fourth-order no
linear term“(“h)3 being absent!, the asymptotic growth
universality class is the MBE growth universality determin
by the¹2(“h)2 term with the initial transient regime~which
could be extremely long lived depending on the ra
n4 /l22) controlled by the irrelevant fourth-order linear term
When bothn250 andl2250, the growth universality class
is the so-called Mullins-Herring~MH! universality defined

FIG. 2. ~a! Typical growth morphologies for one dimension
(d5111) growth without noise reduction in the four models~DT,
ADT, SWV, WV! as shown in the paper for a substrate of a 10
site section from a 10 000 site substrate after the deposition of6

monolayers~ML ! ~the average height is subtracted out for clarity!;
~b! the same as in~a! but with a noise reduction factorm55 @note
the very different vertical scales in~b! compared with~a!#.
4-3
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TABLE I. Summary of our results for the DT and WV models.

Model Properties d5111 d5211

Exponents a51,b51/3,z53 a50(log),b50(log),z52
DT Morphology Kinetically rough Flat and very smooth

Particle current J50(;61026) J;21024

Exponents a51/2,b51/4,z52 a51,b51/3,z54
WV Morphology Kinetically rough Mounds with selected slop

Particle current J;21023 J100;21022; J111;11022
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by then4¹4h term. The various growth exponents for the
universality classes are well known and can be found in
literature@1# where the details on EW, MH, and MBE un
versalities are also discussed.

Determining the asymptotic growth universality class o
discrete nonequilibrium growth model may be difficult d
to extremely long-lived transients that would mask the cro
over behavior. This is obviously a more acute problem wh
any two ~or all three! of the growth terms (n2 ,l22,n4Þ0)
are nonzero in Eq.~1!, although complications could als
arise from higher-order terms~i.e., higher than fourth order!
neglected in Eq.~1!. It is reasonable to assume that in t
generic situation, i.e., in the absence of any compelling s
metry or conservation law induced constraints, the four
order nonlinear equation, Eq.~1!, should suffice to determine
the asymptotic universality class of a given growth mod
and there is no need to consider a higher-order~e.g., the
sixth-order! dynamical equation. This is particularly tru
since simple power counting considerations indicate t
many of the higher-order nonlinearities produce then2 or the
l22 term upon renormalization, and most of the higher-or
terms are simply irrelevant. Thus, it is quite possible t
even in the extremely unlikely situation that all the terms
Eq. ~1! vanish, i.e.,n2 ,l22,n450, for some pathological rea
sons Eq.~1! may still remain a valid generic description o
the asymptotic growth universality class, because high
order nonlinearities neglected in Eq.~1! give rise to the terms
¹2h and/or¹2(“h)2 in the growth dynamics.

We have determined the asymptotic universality cl
from our discrete stochastic simulations by calculating
growth exponents characterizing the height-height corr
tion functions as well as by measuring the surface curren
a tilted substrate as proposed in Ref.@6#. We emphasize tha
the noise reduction technique is crucial in enabling us
conclusively determine the asymptotic universality class
the four ~DT, WV, ADT, SWV! discrete growth models we
study in contrast to earlier simulational studies that ha
been severely hampered by slow crossover, long trans
and strong correction to scaling problems. Our conclusi
about the growth universality classes of the four models
summarized in Table I, are based on consistent results f
simultaneous measurements of growth exponents and su
currents on tilted substrates. All our exponent calculatio
are results of extensive averaging over many simulation r
~and each run is self-averaging since we average over al
substrate lattice sites!—typically we use 100 runs for deter
mining our exponents although 10 runs are usually adequ

The results ind5111 for the DT and the WV model are
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already known in the literature@2,3,5,6# from earlier exten-
sive one-dimensional simulations of these two well-stud
models. The one-dimensional DT~WV! model belongs to
MBE ~EW! asymptotic universality as we also confirm dec
sively in our current simulations. The fact that thed5111
DT model hasn250 exactly follows from a hidden dynami
cal symmetry@7# in the DT growth rules, which aresymmet-
ric, i.e., the DT diffusion rules do not have any preferen
between two- and three-bonded incorporation sites. This
makes the current on a tilted substrate to vanish exactl
the d5111 DT model, confirming that it is generically in
the MBE universality class@n250 in Eq. ~1!#. Similarly,
earlier tilted substrate current measurements@6# as well as
direct simulational exponent measurements for thed5111
WV model establish it to be in the EW universality cla
~i.e., n2.0) although the WV model shows very simila
scaling behavior to the DT model for a very long transie
regime sinceun2u'0 andn4 ,l22 are rather large in the WV
model. Our noise reduced simulations of the WV model@2#
verify rather strikingly that this model belongs to EW un
versality in 111 dimensions. The suppression of crossov
and correction to the scaling effect in th
(111)-dimensional DT and WV models was our origin
motivation for introducing@2# the noise reduction techniqu
in this context.

The kinetically rough surface growth is traditionally an
lyzed in terms of the dynamic scaling hypothesis where
surface width~the root mean square fluctuation in the surfa
height! or more generally, the height-height correlation fun
tion shows generically scale invariant power-law scaling
havior, with critical exponentsa,b,z5a/b, given by
W(L,t);La f „j(t)/L… where W is the dynamical surface
width at growth timet for a substrate of lateral sizeL and
j(t) is the lateral dynamical correlation length for the sp
cific growth process withj(t);t1/z. The scaling function
f (x) behaves asf (x@1);1 and f (x!1);xa so that
W(L,t→`)[Ws(L);La and W(L,t!L1/z);tb with b
5a/z, whereWs(L) is the saturated steady-state long tim
surface width andW„L!j(t)… is the pre-steady-state dy
namical surface width. The set of critical exponentsa, b,
and z5a/b define the growth universality class, and,
principle, can be determined for a particular continuu
growth equation. For the sake of completeness~see the WV
growth results presented below!, we point out that for
mounding instability with slope selection, when the surfa
morphology evolves into a regular mounded pattern with
sides of the mounds having constant slopes, one getsa[1,
4-4
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and only one exponent (b or z) b51/z then defines the
growth pattern. In Table I and in Figs. 3 and 4 we present
calculated critical exponents for the DT and WV mod
along with the associated continuum equation descriptio

Our most surprising findings are presented in Fig. 3~for
the DT model! and Fig. 4~WV model! where our results for
the (211)-dimensional DT and WV models are depicte
We find that the DT~WV! model in (211) dimensions be-
longs to the EW~unstable! dynamic universality in contras
to the (111)-dimensional universality class of these mode
This is an important result presented in this paper that
agrees with the earlier conclusions in the literature. The
termination of the asymptotic universality class of the
11)-dimensional DT and WV model is the main result bei
presented in this paper.

We first discuss the (211)-dimensional DT results
which are in some sense less surprising than the corresp

FIG. 3. ~a! Interface widthW versus timet in the 211 DT
model with substrate sizeL5100031000 and noise reduction fac
tor m51, 3, 10, and 15 from top to bottom. The solid lines are b
power-law fit, which yield the growth exponentb that decreases a
m increases.~b! A typical morphology of a noise reduced DT mod
(m55) from a 100031000 substrate~only a section of 2003200 is
shown here! at 400 ML. The interface width is measured in units
monolayers or lattice spacing and time is measured in units of n
ber of deposited monolayers~i.e., average height of the surface!.
03614
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ing WV results because EW universality is the generic S
universality class. Our measurement of current on tilted s
strates in the (211)-dimensional noise reduced DT simul
tions always exhibit a small but finite downhill current ind
cating the presence of a smalln2.0 term in Eq. ~1!.
This should be contrasted with the correspond
(111)-dimensional DT results where a simple symmetry
gument as well as extensive numerical simulations defi
tively establish the absence of the¹2h term in thed51
11 DT growth equation, i.e.,n250 (Þ0) in the d51
11(211) DT model. The asymptotic universality class
(111)-dimensional DT model is now well established to
given by the following continuum growth equation, whic
doesnot have the genericn2]2h/]x2 term of Eq.~1!:

]h

]t
5n4

]4h

]x4
1l22

]2

]x2 S ]h

]xD 2

1 (
n54,6, . . .

l2n

]2

]x2 S ]h

]xD n

1h,

~2!

t

-

FIG. 4. ~a! Interface widthW versus timet in the 211 WV
model with substrate sizeL51003100 and noise reduction facto
m55. ~b! A typical morphology of a noise reduced WV mod
(m55) from a 5003500 substrate~only a section of 2003200 is
shown here! at 106 ML. The units are dimensionless as explained
the caption for Fig. 3.
4-5
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where the ‘‘higher-order’’ terms of the form
]2/]x2(]h/]x)2m with 2m[n54,6,8, . . . , are marginally
relevant in d5111 ~i.e., simple power counting revea
them as having the same anomalous dimensions as the
linear fourth-orderl22 term!. Our tilted substrate curren
measurement ind5211 DT model shows the existence of
small slope-dependent downhill current of appoximate m
nitude ;1022, whereas the correspondingd5111 DT
model has a current;1026 ~of random sign!, which is in-
distinguishable from the background noise effect. We, the
fore, conclude that the (211)-dimensional DT model, de
scribing nonequilibrium growth on physical surfaces a
interfaces, belongs to the generic EW universality class,
has the following coarse-grained continuum description:

]h

]t
5n2¹2h2n4¹4h1 (

n51,2,3, . . .
l2(2n)¹

2~“h!2n1h.

~3!

Our finding thatn2 is very small, but nonzero, in Eq.~3! for
(211)-dimensional DT growth should not come as a b
surprise~except, of course, for the fact that it has not earl
been discovered in the literature including our own ear
work on the DT model! @8# because the vanishing ofn2 in
the (111)-dimensional DT model arises from a rather pec
liar kinetic-topological symmetry of the DT model, whic
applies only in one dimension and cannot be generalize
two-dimensional surfaces. In the absence of a compel
symmetry argument manifestly makingn250 in the growth
equation, one should expect its generic presence in the
11)-dimensional DT model although the extreme quant
tive smallness ofn2 has made it difficult so far to establis
its finiteness in simulations. Our finding that there is
small downhill current on tilted substrates in th
(211)-dimensional DT model and that the critical exp
nents of (211)-dimensional DT growth~Fig. 3! are consis-
tent with EW universality class@andnot particularly consis-
tent with the MBE universality defined byn250 in Eq. ~1!#
leads to the conclusion that (211)-dimensional DT growth
is in the EW universality class@n2Þ0 in Eq. ~1!# and (1
11)-dimensional DT growth is in the MBE universalit
class (n250). We have also carried out DT simulations
~unphysical! (311) dimensions finding very good agre
ment with EW universality properties.

Our results for the (211)-dimensional WV model~Fig.
4! are very dramatic and completely unanticipated. We fi
that the (211)-dimensional WV model leads to a spectac
lar quasiregular mounded morphology indicating uns
ble epitaxial growth ~whereas the correspondin
(111)-dimensional WV growth is asymptotically stable a
flat, belonging to the EW universality class!. Thus the usual
critical exponents (a,b,z5a/b) are not particularly mean
ingful for (211)-dimensional WV growth~although they
can still be defined in the simulation results—the expone
however, provide a misleading picture since the grow
front, instead of being statistically scale invariant as it sho
be for kinetic surface roughening exhibiting power laws co
trolled by critical exponents, has a quasiregular moun
pattern!.
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The tilted substrate current measurement in
(211)-dimensional WV growth yields another curious su
prise. It turns out that the local current is uphill@along~111!
plane# or downhill @along ~100!# depending on how~i.e.,
along which direction! one decides to tilt. The fact that th
tilted substrate current could depend sensitively~i.e., stabi-
lizing in some directions and destabilizing in other dire
tions! on the tilt direction has not earlier been reported in t
literature where most reported current measurements are
ried out in 111 dimensions~where, of course, this problem
cannot arise! with the hope or expectation~proven to be false
in this paper! that an accurate determination of the unive
sality class of a growth model in 111 dimensions will au-
tomatically give us thesame universality class in 211
dimensions—WV model is in the EW universality class
111 dimensions and unstable~mounded morphology! in 2
11 dimensions. Thus the tilted substrate current meas
ment, while being capable of providing the correct univers
ity class in 111 dimensions, may very well lead to mislea
ing and wrong conclusions in higher dimensions where
current on tilted substrates is explicitly direction depend
and is not uniquely defined. We will publish quantitative d
tails on the WV mounding phenomenon elsewhere. Here
point out the following observations.

~1! The underlying mechanism for the WV mounded mo
phology is related to surface cluster-edge~or kink! diffusion
induced mounding recently discussed in the literature@9#.

~2! This WV mounding phenomenon, arising as it do
from kinetic-topological aspect of surface diffusion, leads
very strong instabilities in~unphysical! dimensions higher
than 211, where early work reported@10# unexplained
strong mound formation in (311)- and (411)-dimensional
WV growth. We have carried out WV simulations in 311
dimensions, finding very strong mounding even without a
noise reduction, consistent with earlier findings@10#.

Finally we consider the two intermediate models, AD
and SWV, for the sake of completeness. Thed5211
growth morphologies in these two models are shown in F
5 ~ADT! and 6 ~SWV!. Without presenting the actual nu
merical results for the critical exponents for these two mo
els, we just mention that the ADT and SWV models in
11 dimensions behave qualitatively similar to the W
model in 211 dimensions with fairly strong mounding un
der noise reduction although the morphological details in
two models differ somewhat with the SWV morphology b
ing similar to the pyramidal structures of the WV morpho
ogy and the ADT morphology having flat top mounds wi
very deep and narrow grooves. Thus, ADT/SWV/WV a
have unstable growth in 211 ~or higher! dimensions with
quasiregular, mounded morphology, whereas DT in 211 ~or
higher! dimensions is in the EW universality with stable an
smooth growth morphology. All four models have kinetical
rough statistically scale invariant growth in 111 dimensions
with the WV ~DT! model belonging to EW~MBE! univer-
sality class.

Before concluding we point out that the noise reducti
technique is only one of several methods one can appl
improve the calculation of exponents in kinetically roug
surface growth. For example, single-step model and
4-6
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stricted solid-on-solid models@1# are successful in reducin
noise in ballistic deposition simulations. These techniq
are, in fact, alternative ways of suppressing large surf
height differences, very similar in spirit to our noise redu
tion technique.

We conclude by stating that we have found the univers
ity class concept to be of limited usefulness in conser
discrete limited mobility nonequilibrium surface grow
models. The same growth rules defining a particular mo
~e.g., WV or DT! may belong to different universality classe
in different dimensionalities~not in the sense of superunive
sality, but in a more fundamental nontrivial sense as if
equilibrium model, which is in the Ising universality class
two dimensions, behaves as anx-y model in three
dimensions—a patently absurd notion!. In addition, rather
minor changes in local growth rules could lead to drama
differences in the resulting growth morphology or the u
versality class—DT and WV have very similar local grow
rules, but their morphologies, smooth~DT! and mounded

FIG. 5. A typical morphology of a noise-reduced ADT mod
(m55) from a 1003100 substrate at 106 ML.
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~WV!, and universality class~EW for DT and unstable for
WV! are strikingly qualitatively different. We also find tha
measuring surface current on tilted substrates@6#, while be-
ing a potentially useful technique for discussing t
(111)-dimensional universality class, may not work in
11 dimensions and may produce misleading or conflict
conclusions depending on the precise direction of the sur
current. We have assumed throughout the paper that
noise reduction technique, which is absolutely crucial in o
obtaining the asymptotic universality classes of various m
els we study, does not modify the universality class o
growth model~and only suppresses transient and correcti
to-scaling effects by reducing the effective noise streng!.
This belief is based on extensive earlier analysis of the no
reduction technique in the literature, which, in general,
thought not to affect the growth universality class.

This work was supported by the NSF-MRSEC a
US-ONR.

FIG. 6. A typical morphology of a noise reduced SWV mod
(m55) from a 1003100 substrate at 106 ML.
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